一场举世瞩目的机器人与人类大脑的对决正在韩国首尔上演。对战双方分别是谷歌的人工智能AlphaGo机器人与世界围棋高手李世石。
智能化是工业4.0之魂
“工业4.0”,是一个德国政府提出的高科技战略计划。这个概念包含了由集中式控制向分散式增强型控制的基本模式转变,目标是建立一个高度灵活的个性化和数字化的产品与服务的生产模式。在这种模式中,传统的行业界限将消失,并会产生各种新的活动领域和合作形式。创造新价值的过程正在发生改变,产业链分工将被重组。
第一次工业革命是随着蒸汽机驱动的机械制造设备的出现;第二次工业革命是基于劳动分工的,电力驱动的大规模生产;第三次工业革命是用电子和IT技术实现制造流程的进一步自动化。“工业4.0”概念即是以“智能制造”为主导的第四次工业革命,或革命性的生产方法。该战略旨在通过充分利用信息通讯技术和网络空间虚拟系统—信息物理系统(Cyber-Physical System) 相结合的手段,将制造业向智能化转型。
“工业4.0”项目主要分为三大主题,一是“智能工厂”,重点研究智能化生产系统及过程,以及网络化分布式生产设施的实现;二是“智能生产”,主要涉及整个企业的生产物流管理、人机互动以及3D技术在工业生产过程中的应用等。该计划将特别注重吸引中小企业参与,力图使中小企业成为新一代智能化生产技术的使用者和受益者,同时也成为先进工业生产技术的创造者和供应者;三是“智能物流”,主要通过互联网整合物流资源,充分发挥现有物流资源供应方的效率,而需求方则能够快速获得服务匹配,得到物流支持。在工业4.0时代,虚拟全球将与现实全球相融合。通过计算、自主控制和联网,人、机器和信息能够互相联接,融为一体。未来制造业将实现更高的工程效率、更短的上市时间以及生产灵活性。从以上的描述中不难看出,工业4.0对智能化的要求涵盖更广,涉及机器感知、规划、决策以及人机交互等方面,而这些领域都是人工智能技术的重点研究方向。
第一个问题来了,人脑为何功能强大?答案是超大规模并行结构使得人脑功能强劲。人类的大脑中有数百至上千亿个神经细胞(神经元),而且每个神经元都通过成千上万个“突触”与其他神经元相连,形成超级庞大和复杂的神经元网络,以分布和并发的方式传导信号,相当于超大规模的并行计算(Parallel Computing)。因此尽管单个神经元传导信号的速度很慢(每秒百米的级别,远低于计算机的CPU),但这种超大规模的并行计算结构仍然使得人脑远超计算机,成为世界上到目前为止最强大的信息处理系统。第二个问题是,机器如何超越人脑?传统的观点认为人脑是无法被机器超越的,但随着近几年科技的改进,这一情况正在改变。主要是四个方面。
(一) 云计算的出现
从概念上讲,可把云计算看成是“存储云 计算云”的有机结合,即“云计算=存储云 计算云”。存储云的基础技术是分布存储,而计算云的基础技术正是并行计算:将大型的计算任务拆分,然后再派发到云中的各个节点进行分布式的计算,最终再将结果收集后统一处理。大规模并行计算能力的实现使得人工智能往前迈进了一大步。云计算的实质是一种基础架构管理的方法论,是把大量的计算资源组成IT资源池,用于动态创建高度虚拟化的资源供用户使用。在云计算环境下,所有的计算资源都能够动态地从硬件基础架构上增减,以适应工作任务的需求。云计算基础架构的本质是通过整合、共享和动态的硬件设备供应来实现IT投资的利用率最大化,这就使得使用云计算的单位成本大大降低,非常有利于人工智能的商业化运营。
值得特别指出的是,近来基于GPU(图形处理器)的云计算异军突起,以远超CPU的并行计算能力获得业界瞩目。CPU的架构是有利于X86指令集的串行架构,从设计思路上适合尽可能快的完成一个任务;对于GPU来说,它最初的任务是在屏幕上合成显示数百万个像素的图像——也就是同时拥有几百万个任务需要并行处理,因此GPU被设计成可并行处理很多任务,天然具备了执行大规模并行计算的优势。现在不仅谷歌、Netflix用GPU来搭建人工智能的神经网络,Facebook、Amazon、Salesforce都拥有了基于GPU的云计算能力,国内的科大讯飞也采用了GPU集群支持自己的语音识别技术。GPU的这一优势被发现后,迅速承载起比之前的图形处理更重要的使命:被用于人工智能的神经网络,使得神经网络能容纳上亿个节点间的连接。传统的CPU集群需要数周才能计算出拥有1亿节点的神经网的级联可能性,而一个GPU集群在一天内就可完成同一任务,效率得到了极大的提升。另外,GPU随着大规模生产带来了价格下降,使其更能得到广泛的商业化应用。
(二)大数据
机器学习是人工智能的核心和基础,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。该领域的顶级专家Alpaydin先生如此定义:“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”过去机器学习的研究重点一直放在算法的改进上,但最近的研究表明,采用更大容量数据集进行训练带来的人工智能提升超过选用算法带来的提升。举两个实例说明:1、在语义识别方面,一个普通算法使用1亿个单词的未标注训练数据,会好过最有名的算法使用100万个单词;2、将照片中的马赛克区域用与背景相匹配的某些东西来填补,从一组照片中搜索填补物的话,如果只用1万张照片,则效果很差,如果照片数量增加到200万张是,同样的算法会表现出极好的性能。
(三)“深度学习”
“深度学习”是机器学习研究中的一个新的领域,它模拟人类大脑神经网络的工作原理,将输出的信号通过多层处理,将底层特征抽象为高层类别,它的目标是更有效率、更精确地处理信息。深度学习自2006年由Geoffrey Hinton教授和他的两个学生被提出后,使得机器学习有了突破性的进展,极大地推动了人工智能水平的提升。2013 年,《麻省理工技术评论》把它列入年度十大技术突破之一。
人脑具有一个深度结构,认知过程是逐步进行,逐层抽象的,能够层次化地组织思想和概念。深度学习之所以有如此大的作用,正是因为它较好地模拟了人脑这种“分层”和“抽象”的认知和思考方式。深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。
深层模型是包含多个隐藏层的人工神经网络,多层非线性结构使其具备强大的特征表达能力和对复杂任务建模能力。训练深层模型是长期以来的难题,近年来以层次化、逐层初始化为代表的一系列方法的提出给训练深层模型带来了希望,并在多个应用领域获得了成功。深层模型的并行化框架和训练加速方法是深度学习走向实用的重要基石,已有多个针对不同深度模型的开源实现,谷歌、Facebook、百度、腾讯等公司也实现了各自的并行化框架。
(四)“人脑”芯片
现代计算机的冯·诺依曼体系结构阻碍了大规模并行计算的实现,导致人工智能发展受限。而今天人工智能发展面临突破,除了上文说的云计算、大数据、深度学习三个原因之外,另外一个方向的努力也是不容忽视的,那就是彻底改变了冯·诺依曼体系结构的“人脑”芯片。
“人脑”芯片,也叫神经形态芯片,是从硬件方向对人脑物理结构的模拟。这种芯片把数字处理器当作神经元,把内存作为突触,跟传统·冯诺依曼结构不一样,它的内存、CPU和通信部件是完全集成在一起,因此信息的处理完全在本地进行。而且由于本地处理的数据量并不大,传统计算机内存与CPU之间的瓶颈不复存在了。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作。2011年的时候,IBM首先推出了单核含256个神经元,256×256个突触和256个轴突的芯片TrueNorth原型,但从规模上来说,这样的单核脑容量仅相当于虫脑的水平。经过3年的努力,IBM 终于在复杂性和使用性方面取得了突破。2014年推出的最新芯片将4096个内核、100 万个神经元、2.56亿个突触集成在直径只有几厘米的方寸(是2011年原型大小的1/16)之间,而且能耗只有不到 70 毫瓦,每秒每瓦可实现460亿次神经突触操作。IBM的最终目标就是希望建立一台包含100亿个神经元和100万亿个突触的计算机—这样的计算机要比人类大脑的功都强大10倍,而功耗只有一千瓦,而且重量不到两升(我们大脑的大小)。
综合来看,人机大战的受益者
无论胜负如何,李世石的知名度得以提升,同时围棋也被更多人关注,这显然是获利的。另外一方就是谷歌以及其代表的人工智能群体。在"十三五"规划纲要草案将首次出现了"人工智能"一词,在"科技创新-2030项目"中,智能制造和机器人成为重大工程之一;培育人工智能、智能硬件、新型显示、移动智能终端等,被列入战略性新兴产业发展行动。2016年,不仅是"十三五"起步之年,也是中国人工智能商用的元年。"十三五"规划纲要草案提到人工智能,是一种对相关产业和企业的正向政策刺激。人工智能研发热一旦在中国启动,潜力不可限量。投资者可关注一下相关投资机会。